Medical Aid for Parkinson’s Patients Experiencing Episodes of Gait Freezing

This project is aimed at early prediction of Parkinson’s disease through computerized analysis of online handwriting samples. While a number of clinical evaluations are carried out to diagnose the Parkinson’s disease, most of these tests are effective only once the disease is at a relatively advanced stage. Studies have shown that analysis of handwriting can be used as a valuable tool for prediction of Parkinson’s disease at very early stages. In the proposed research, we have employed raw signals captured by a digitizer tablet while attempting several writing and drawing templates, to compute various kinematic, temporal, and pen-based attributes. In addition to these online dynamic attributes, static offline visual features are also extracted using state-of-the-art Convolutional Neural Networks (CNNs). The developed tools allow practitioners to collect handwriting and drawing samples of subjects and employ a combination of different types of features (online and offline) for the analysis and prediction. 

Parkinson’s disease is a progressive nervous system disorder that affects movement.

 It is a disease in which the neural pathways between your brain and foot muscles are no longer communicating effectively, causing problems such as shaking, stiffness, tremors, and Freezing of Gait (FoG).

To overcome the problem of FoG, three cueing systems is incorporated to the device named visual, auditory, and vibratory cueing system.

These cueing systems help Parkinson’s patients with episodes of FoG to walk smoothly when the condition occurs.

Project Team

  • Dr. Nadia Imran
  • Qadeer Hashir

Publications

  1. Moetesum, M., Diaz, M., Masroor, U., Siddiqi, I., & Vessio, G. (2022). A survey of visual and procedural handwriting analysis for neuropsychological assessment. Neural Computing and Applications, 1-18.
  2. Diaz, M., Moetesum, M., Siddiqi, I., & Vessio, G. (2021). Sequence-based dynamic handwriting analysis for Parkinson’s disease detection with one-dimensional convolutions and BiGRUs. Expert Systems with Applications, 168, 114405.
  3. Moetesum, M., Siddiqi, I., Javed, F., & Masroor, U. (2020, September). Dynamic Handwriting Analysis for Parkinson’s Disease Identification using C-BiGRU Model. In 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) (pp. 115-120). IEEE.

Project Demo

Project Demo